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Point Estimates of Parameters for Convex Adjustment Costs
of Labor Employment

Hirokatsu Asano*

Abstract

This research note reports the point estimates of parameters for convex adjustment costs of labor
employment. When an economic model is nonlinear, its corresponding econometrics model is usually
a linear approximation, and is subject to linearization errors. In order to avoid such errors, the research
note directly estimates a nonlinear econometrics model. The economic model is dynamic labor adjust-
ments with convex adjustment costs, which is nonlinear, and the target industry is the automobile-parts
manufacturing industry. By numerically solving the nonlinear economic model, the research note shows
that the /; norm is superior to the /; norm, the /.. norm, and the GMM minimand, and reports best es-
timates by the grid search method.
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1. Economic Model

A firm adjusts its labor employment every year in accordance with the fluctuating economic envi-
ronment surrounding it. A firm hires two types of workers: regular workers and nonstandard workers.
Adjusting the number of regular workers, [, incurs convex adjustment costs, while adjusting the num-
ber of nonstandard workers, #, is free of adjustment costs. The production function and the output

demand are, respectively, Cobb-Douglas and iso-elastic. Then, the firm’s problem becomes the follow-
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ing:

VIZ, bl= max E { i BIVAZ, I, n) —TW (I, n) —AC (s, L+1)] } @
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where V, VA, TW, AC and B (0, 1) are, respectively: the value function; the value-added function,
i.e., VA =revenue (R) —material costs (C) ; the total wage; the convex adjustment costs; and the dis-
count factor. In addition, Z is a stochastic coefficient representing economic environment. The functional

forms of VA, TW, and AC are the following:

VA (Z, I, n)=Z.K:(I.+¢ny), C+r<1) @

TW {1, n) =wl+ w.n, w.<w, ¢<w./w) 3)

ben =k |5 €>1) @)

AC(, L) =C I

where K, w, w,, and ¢ are, respectively: the level of capital stock; the wage rates for regular and non-
standard workers; and the relative productivity of nonstandard workers to regular workers. In the eco-
nomic model, there are seven parameters: = (8, {, 7, ¢, C, &, w). The wage rates are obtained from
the “Monthly Labour Survey” conducted by the Ministry of Health, Labour and Welfare.

Because nonstandard workers can be adjusted without adjustment costs, the optimal number of

nonstandard workers can be written as follows:

n*=max{0,;{(7¢5f{g>ll’—l}] ®)

Thus, the optimal employment of nonstandard workers is a function of the variable /. Entering the op-

timal employment of nonstandard workers into the functions VA and TW yields the following:

1-7) w"(}%/}ZKr)l%’— (wl—%)l ifn*>0
VAZ, 1,0~ TW(, n")=1{ 79 s 4 ®)
ZK T —wil ifn*=0.
Then, equation (1) can be rewritten as follows:

V[Z,l]=l‘n?x {r Z,1,1)+BEV [Z°, I']}. )
2

where 7 is the reward function, i.e., » (Z,1,1)=VA (Z,1) —TW () —AC (l,1"); the prime (") indicates
the value of the next period. Equation (7) is the theoretical model or the Bellman equation for dynamic

labor adjustments.
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Solving equation (7) yields the policy function or the predicted number of regular workers, {"(Z,
1), as well as the value function V. With the policy function, the predicted values of the labor adjustment

rate, (I"—1)/1, become computable. The conditional expectation of residuals, #, is zero, i.e.,

Elu@) | X1=0 where u(é)El/l_l— l’(X|l¢‘))—l ,

®

and X is a vector of economic variables or X = (1, [, K, R, C)”. The variable vector X includes the
unity for convenience and excludes the variable Z because the research note estimates Z by the vari-
ables in X. Because there are no analytical solutions of the Bellman equation, the research note resorts
to numerical solutions, particularly the value function iterations.

The maximization of equation (7) also yields the Euler equation as the first order condition of

maximization. The Euler equation can be written as follows:

or (1,1, Z; 0) or (I,17,2,0)7 _
e e ©
where
U= e "=ry. . ‘l”—l" nl Wy o
c}—l, e szgn(—l, J1"-o - vl ¢) if n°>0
or (I',17,Z;0) =
FYR 17— |5 s » 7= - ‘l”_l,‘ ) . ) -
C}il, l {5 szgn(il, )l 0| = l}+yZKl w fn' =0
or (,0I',Z;0) _ _ . I'=1 ‘l’—l SRR
and a0 51gn(7l )EC e A
Then, the following conditional expectation holds:
Elv(,1,17,Z,2;0) | X]=0 10)

o (I, 1,2 0)
al’

or (,1',Z; 0)

Y, } . Equation (10) is the conditional

where v(,1,1",Z,7Z0) = +,3Ez[

expectation for the Euler equation. The variables [ and [” are respectively replaced by the policy func-

tion{"(Z,1) and [”(Z",1")=1"(Z’, ") in the numerical solutions.

2. Selection of Norm by Grid Search

Equations (8) and (10) yield the orthogonality conditions, i.e., E[Xu«] =0 and E [Xv] =0. Because

the values of X are greatly different, which makes it impractical to compare moments, the sample mo-
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ments are augmented by the corresponding sample means of X. Thus, the augmented sample moments

are the following zero expectations:

m®) =(En, B 22 | B ] B R ] B 20

E, [1] E. [K] E, [R] E, [C]
Elvl, E”[Enlv[l] } ) E[EK[?(] } ’E”[E,,R[Z?] } : E[EC[vC] ” ‘9>:°‘ (1)

Even though the population moments are zero, the sample moments should be nonzero. Therefore,
as its measure of greatness for equation (11), the analysis employs three norms; the I, norm, the I,
norm and the /. norm. Econometric analyses usually choose the I, norm, or the square of it. In addi-
tion, the research note attempts the /; norm and the /.. norm.

In econometrics, estimations based on equation (11) usually rely upon the generalized method

of moments (GMM) which is the following minimization:
min 7 O)"W-m@) (12)

where W is a positive definite matrix. The optimal choice for the matrix W is the variance matrix of
m(0). When the number of the moments exceeds the number of parameters, —an over-identified case—
the GMM minimand, m" W-m (= @n), follows the chi-squared distribution under the null hypothesis
that the population means are all zero.

As the first step of minimizing the norms or the GMM minimand, the research note resorts to
the grid search for parameters 4. The grid search is a primitive and demanding way to find the solu-
tion of the minimization, but it provides the properties and characteristics of the minimization problem.
In particular, when the minimization problem is ill-conditioned, the grid search method is very helpful.
Table 1 shows the grid points of the parameters. The grid search requires 3,888 calculations. If the

calculations are done by a personal computer, each calculation requires about thirty minutes and it

Table 1. Parameter Values for Grid Search

0.93, 0.94, 0.95, 0.96
0.30, 0.35, 0.40

0.40, 0.50, 0.60

0.20, 0.225, 0.25
0.20, 0.40, 0.60, 0.80
1.50, 1.75, 2.00

1.50, 1.75, 2.00
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would take a couple of thousand hours. Because the research note relies upon a super computer, its
calculations took about forty hours. Thus, this specific method of research is possible only by using

a super computer.

3. Results

Figure 1 panel (a) shows the entire graph of the grid search. There are many points along the
horizontal line around E [«#] =0.04, where the predicted adjustment rate is close to zero. Those points
therefore result from too great adjustment costs. Figure 1 panel (b) is the scatter plot around the ori-
gin. Some points are very close to the origin of the E [#]-E [v] plane. However, those points may not
be close to zero for other moments.

Panels of figure 2 show the scatter plots for the three examined norms and the GMM minimand,
Q.. Figure 2 panel (a) demonstrates that the /; norm is minimized on the x-axis. Thus, the predicted
adjustment rates are close to the actual rates on average. The other three panels illustrate that their
parameter values, at minimum, are corresponding to zero adjustments, so that predicted adjustment
costs are too great. Table 2 shows the values of the parameters and the moments. Table 2 also shows
that, although all estimated moments are far less than the corresponding standard errors, the p-values
of the chi-squared test are too little to reject the null hypothesis so that some of the population moments

are nonzero.

4. Further Research

The research note finds that the /; norm is superior to the two other examined norms and the
GMM minimand because the latter three tend to over-estimate the parameter values. Because the grid
search is an inefficient method for solving minimization problems, the next step would be Newton’s
method or the quasi-Newton method. However, although it is not stated in the research note, both the
Hessian matrix for minimization problems and the Jacobian matrix for solving nonlinear equations seem

close to singular; that is, the estimation is ill-conditioned.
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Figure 1. Grid Search
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Figure 2. Values of the Norm and the GMM Minimand
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Table 2. Parameters and augmented moments at the least norms or GMM minimand

A b &l Q.
value 0.4275 0.1511 & 0.0783 13.73
Parameters
B 0.930 0.950 0.960
¢ 0.300 0.300 0.350
¥ 0.600 0.600 0.600
¢ 0.250 0.250 0.225
C 0.400 1.000 1.000
& 2.000 2.000 2.000
® 1.500 2.000 2.000
Augmented moments

std. error std. error std. error
E.[u] —0.0047 0.2745 0.0416 0.2751 0.0325 0.2741
E.[lu/E,[1]] —0.0094 0.1880 0.0263 0.1888 0.0191 0.1885
E.[Ku/E.[K]] 0.0006 0.3122 0.0468 0.3146 0.0385 0.3133
E.[Ru/E.[R]] 0.0004 0.2132 0.0323 0.2165 0.0257 0.2155
E.[Cu/E.[C]] 0.0204 0.2859 0.0421 0.2967 0.0364 0.2947
E.[v] 0.0641 0.1446 0.0459 0.1926 0.1196 0.4838
E.[lv/E.[1]] 0.0729 0.1689 0.0505 0.2282 0.1372 0.5013
E.[Kv/E,[K]] 0.0512 0.1090 0.0346 0.1538 0.0949 0.3823
E.[Rv/E.[R]] 0.0868 0.2233 0.0586 0.3168 0.1718 0.6766
E.[Cv/E,[C]] 0.1171 0.3247 0.0783 0.4385 0.2358 0.9757
Q. 62.39 (1.81E-13) 27.83 (3.94E-6) 13.73 (3.30E-3)

Remark: The p-values of the x* tests in the parentheses (x* distribution with 3 degrees of freedom)
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